Hazards of Ultraviolet Radiation

SafetyNet #: 106

Although ultraviolet radiation (UV) plays a useful role in research and medical applications, there are also harmful effects that can be found in the laboratory. UV light from equipment such as biological safety cabinets, germicidal lamps, transluminators (UV light boxes), and Woods Lamps can all cause cellular damage.

Important Wave Lengths

Ultraviolet radiation is that portion of the electromagnetic spectrum that falls between visible light with wavelengths of 400 nanometers (nm) and x-rays at 4 nm and below. This spectrum has been subdivided into three regions:

1. 400nm to 315nm
 (Near UV, UV-A, black light region or suntan region)
2. 315nm to 280nm
 (Mid UV, UV-B, erythemal region causes reddening of the skin)
3. 280nm to 100nm
 (Far UV, UV-C)

Biological Effects

The biological effects of the various wavelengths in the ultraviolet spectrum can produce increased pigmentation of the skin. This can result in a simple suntan or a potential overexposure, resulting in a severe reddening and blistering (thermal burns). Repeated sunburn and overexposure has been linked in some studies to premature aging, wrinkles and skin cancer. Serious eye and skin burns will result from exposure to direct or indirect rays. The skin can heal over time but a severe burn to the cornea can cause scaring and potential loss of vision.

The cornea of the eye is composed of a thin layer of specialized epithelia cells. These cells can also absorb UV radiation, resulting in tiny lesions on the cornea that may not be felt for several hours after exposure. The sensation is much like having sand in your eye. Known as photokeratitis, welder’s flash or snow blindness, the effects can last up to 48 hours but subsides as the cells of the cornea rebuild. Although most UV radiation that enters the eye is absorbed in the cornea, molecular changes can occur in the lens as photons bombard proteins and change their configuration, resulting in cataract formation.
Precautions

Ordinary window glass is almost completely opaque to natural ultraviolet light however; light generated in the laboratory contains wavelengths that are not filtered by the atmosphere. These are potentially harmful if viewed without proper eyewear. Regular prescription glasses may allow UV-radiation to penetrate and could cause eye damage. Consequently, do not stare into the light source.

Bio-hoods and fume hoods that contain UV lights should be kept closed (shields down) when the light is on. It is best to run these lights over night or when staff is not present. Hand held UV devices like Woods Lamps (mainly used to detect fluorescence) also have the potential to cause skin and eye injury. When working with UV producing devices, eye and skin protection is required. A long sleeve shirt and cotton gloves, face shields or safety glasses made of polycarbonate will block most of the UV spectrum. Safety glasses that protect from laboratory generated UV radiation must be stamped with ANSI Z87.1. It is important to note that polycarbonate safety glasses will not protect from high radiant energy UV devices such as torch cutting, welding or lasers, so specialized safety glasses are required for safe operation.

Precautions for ultraviolet lasers are similar to precautions required for other UV producing devices, however the light from a laser is a highly collimated source of extremely intense monochromatic electromagnetic radiation. Lasers are capable of immediate injury within fractions of a second from direct, specular or diffuse reflection. More information on lasers and laser systems can be found in [SafetyNet #73](https://safetyservices.ucdavis.edu/safetynet73) [1], “Laser Protective Eyewear”, [SafetyNet #74](https://safetyservices.ucdavis.edu/safetynet74) [2], “The Principal Investigator's Laser Safety Training Responsibilities”, [SafetyNet #75](https://safetyservices.ucdavis.edu/safetynet75) [3], “Laser Warning Signs and Labeling”, [SafetyNet #76](https://safetyservices.ucdavis.edu/safetynet76) [4], “Safe Laser Practices” and [SafetyNet #77](https://safetyservices.ucdavis.edu/safetynet77) [5] “Standard Operating Procedures for Lasers and Laser Systems.”

Some foods and medications contain photosensitizing agents; figs, limes, parsnips and celery root are all in this family. While some act only when applied topically, consumption of celery root could cause some people to be hypersensitive to skin exposure from UV radiation. If you like celery root in your salad you might opt for more carrots instead. If you are taking medication you should consult your physician to determine any potential effects related to UV radiation.

Contact

Research Safety
researchsafety@ucdavis.edu 530-752-1493
FAX: 530-752-4527

More information

Related content

1. Laser Protective Eyewear
2. The Principal Investigator's Laser Safety Training Responsibilities
3. Laser Warning Signs and Labeling
4. Safe Laser Practices
5. Standard Operating Procedures for Lasers or Laser Systems

Copyright ©2015 The Regents of the University of California, Davis campus. All rights reserved.

Source URL (modified on 08/24/17 02:44pm): https://safetyservices.ucdavis.edu/safetynet/hazards-ultraviolet-radiation

Links